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Abstract

In recent years, the landscape of pro- and anti-inflammatory cytokines has rapidly expanded with the identification of
new members proven to be involved at different extent in the pathogenesis of chronic immune mediated inflammatory
diseases including rheumatoid arthritis (RA). The advance of our understanding of mediators involved in the pathogenesis
of RA and in consequence, the development of novel targeted therapies is necessary to provide patients not responding
to currently available strategies with novel compounds. The aim of this review article is to provide an overview
on recently identified cytokines, emphasizing their pathogenic role and therapeutic potential in RA. A systematic
literature review was performed to retrieve articles related to every cytokine discussed in the review. In some
cases, evidence from animal models and RA patients is already consistent to move forward into drug development. In
others, conflicting observation and the paucity of data require further investigations.Forty years after the discovery of
IL-1, the landscape of cytokines is continuously expanding with increasing possibilities to develop novel therapeutic
strategies in RA.
Background
Rheumatoid arthritis (RA) is a chronic inflammatory
disease characterized by inflammation of the synovial
membrane. The release of pro-inflammatory cytokines
as well as other pro-inflammatory molecules results in
joint destruction and disability [1, 2]. To date, the exact
cause of RA has not been identified but several studies
pointed out that pro-inflammatory cytokines, including
tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6,
IL-17 and the mediators produced through downstream
pathways in the arthritic joints, constitute the milieu
driving cartilage and bone destruction [3]. On this basis,
therapeutic possibilities for RA patients include mono-
clonal antibodies, fusion proteins or antagonists against
these molecules. However, partial and non-responses to
these compounds, together with the increasing clinical
drive to remission induction, requires that further
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therapeutic targets are identified [4]. In recent years, a
growing number of new cytokines as well as their func-
tion in health and disease have been identified [5]. Cyto-
kines serve as the mediators of cellular differentiation,
inflammation, immune pathology, and regulation of the
immune response. In particular, novel inflammatory
mediators with their associated cell signaling events have
now been proven to have a role in experimental arthritis
and in RA, including members of the IL-1 (IL-33, IL-36,
IL-37, IL-38) and IL-12 (IL-27, IL-35) superfamilies, and
other cytokines such as IL-32, IL-34. The aim of this review
article is to provide an overview on these recently identified
cytokines, emphasizing their pathogenic role and thera-
peutic potential in RA. Table 1 summarizes all the available
data in animal models and RA patients for each cytokine.
New members of IL-1 family
IL-33
IL-1 cytokine includes 11 pro-inflammatory and anti-
inflammatory members, chronologically named accord-
ing to their discovery, IL-1 family member 1 (IL-1F1) to
IL-1F11. More commonly, they are also known as IL-1α,
IL-1β, IL-1 receptor antagonist (IL-1Ra), IL-18, IL-33,
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Table 1 Data on different cytokines in experimental arthritis and patients with rheumatoid arthritis

Experimental arthritis Rheumatoid arthritis

serum plasma SF ST

IL-12 family

IL-27 IL-27Rα KO mice develop more
severe CIA [21]
IL-27 triggers PGIA [22]
IL-27 administration ameliorates
CIA and AIA [23–25, 27]

↑ vs HD [28]
↑ in RA-ILD [28]

↑ vs HD [29]
= vs HD and
OA [30]

↑ vs OA [30] ↑ vs OA [30]

IL-35 IL-35 ameliorates CIA [110–112] ↑ in early RA vs established
RA [113]
↓ following DMARD therapy
↓ vs HD [115]
Inverse correlation with
disease activity [115]

na ↑ vs OA [113] ↑ vs OA and PsA
[114]

IL-1 family

IL-33 Development and severity of CIA in
IL-33 KO mice is comparable to that
of WT mice [67]
Mice lacking ST2 develop
attenuated CIA and AIA [68, 69]
Treatment of WT mice with
recombinant (r) IL-33 significantly
exacerbated CIA and AIA
[68, 69]

↑ vs HD, OA and PsA [70–73]
↑ in RA-ILD [71]
↑ in erosive RA [71]
Lower baseline levels predict
good response to anti-TNF-α
agents [74, 75]
Detectable levels at baseline
predict response to RTX [77]
Detectable levels at baseline
predict atherosclerotic plaque
progression [76]

na ↑ vs OA [26]
= vs OA [72]
Lower baseline levels
predict good response
to anti-TNF-α agents
[74, 75]

IL-36 IL-36 is upregulated in CIA, CAIA and
AIA [122, 123]
IL-36 blockade does not affect arthritis
[122, 123]

↑ vs HD [133] na ↑ vs OA [126]

IL-37 Systemic and intra-articular
administration of recombinant IL-37
inhibits the development of
synovitis in CIA and AIA [146, 147]

↑ vs HD [133] ↑ vs HD and
OA [147–150]
↑ in FR+ and anti-
CCP+ patients vs
seronegative [150]
↑ in active vs inactive
RA [149]
↑ in erosive RA [150]

↑ [150] ↑ [147]

IL-38 IL-38 KO mice display more severe
AIA [131]
IL-38 overexpression attenuates CIA
and STIA [132]

= vs HD and OA [131]
↑ vs HD [133]

na ↑ vs OA [131]

Other

IL-32 IL-32 administration worsens CIA
[44]

↑ vs HD and OA [46, 47] na ↑ vs OA [48, 49]

IL-34 IL-34 KO mice do not display any
autoimmune manifestations
[87, 88]
CSF-1R blockade is associated with
less severe mBSA-IA and CIA [93–95]

↑ vs HD, OA, PsA, AS [96–100]
Levels correlate with RF, anti-
CCP, ESR, CRP, disease activity,
smoking [96–99]
Baseline levels predict
radiographic progression
[97, 99]

na ↑ vs HD, OA, PsA,
AS [96, 100]
Levels are directly
correlated with those
of SF RANK-L

↑ [95, 101, 102]
Expression associated
with the severity of
synovitis [95, 101, 102]

SF synovial fluid, ST synovial tissue, KO knock-out, WT wild type, CIA collagen induced arthritis, PGIA proteoglycan-induced arthritis, AIA antigen induced arthritis,
CAIA collagen antibody-induced arthritis, STIA K/BxN serum transfer-induced arthritis, mBSA methylated bovine serum albumin, HD healthy donors, OA osteoarthritis, PsA
psoriatic arthritis, AS ankylosing spondylitis, ILD interstitial lung diseas, TNF, tumour necrosis factor, RTX rituximab, RF rheumatoid factor, anti-CCP anti cyclic cutrullinated
peptide, ESR erythrosedimentation rate, CRP C reactive protein, RANK-L receptor activator of nuclear factor κ-B ligand, DMARDs disease modifying anti-rheumatic drugs
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IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37, and IL-38 [6]. All
IL-1 cytokines bind to similar receptors consisting of
extracellular immunoglobulin domains and intracellular
Toll/IL-1 (TIR) domains. The signal is transduced via
cytoplasmic myeloid differentiation primary response pro-
tein 88 (MyD88) and IL-1R associated kinase 4 (IRAK4),
ending up in the activation of transcriptions factors like
NF-kB or MAPK [7]. IL-33 (IL-1F11) was identified in high
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endothelium venules in 2003 [8]. Subsequent studies re-
vealed that IL-33 acts as alarmin, being modulated by in-
flammatory stimuli. Indeed, IL-33 is up-regulated during
the inflammatory response and can be released by necrotic
cells. On the other hand, IL-33 is inactivated by caspase-1
during apoptosis [9]. IL-33R ST2 belongs to the family of
IL-1R and, upon binding to the ligand, triggers the trans-
duction signal via the NF-kB or MAPK pathways [10]. ST2
is expressed by several immune cells including basophils,
mast cells, eosinophils, DCs and NK cells. However, the
most important target of IL-33 is represented by Th2 cells.
Besides its trans-membrane form, ST2 can be released in a
soluble form (sST2) by different immune and non-immune
cell types thereby blocking IL-33 effects [11]. Being in-
volved in Th2 immune response, IL-33 has been extensively
investigated in the field of allergic diseases [12]. Circulating
and tissue levels of IL-33 are increased in experimental
models of asthma [13, 14] and blockade of this pathway is
able to ameliorate airway inflammation [13, 15–17], thereby
confirming an in vivo inhibition of IL-33-mediated effects.
With regard to experimental arthritis, the development and
severity of CIA in IL-33 KO mice is comparable to that of
WT mice [18]. However, mice lacking ST2 develop attenu-
ated CIA and AIA and treatment of WT mice with recom-
binant (r) IL-33 significantly exacerbated both [19, 20].
Therefore, data from animal models do not provide uni-
vocal evidence. In RA patients, IL-33 serum levels are in-
creased compared to normal and disease controls (OA and
psoriatic arthritis (PsA)) [21–24]. Evidence from RA SF is
conflicting as IL-33 was found to be either increased [25]
or comparable [23] to OA SF. Conflicting results were also
obtained with regard to the correlation of serum and SF IL-
33 in RA paired samples. In fact, both an inverse [21] and a
direct association have been reported [25]. Of interest, RA
patients with higher active disease display higher levels of
this cytokine in serum [21] and SF [26] and higher IL-33
serum levels were also associated to bone erosions and RA-
ILD [22]. In this regard, and also in general when measur-
ing cytokines in the serum of RA patients, it should be
taken in mind that discrepancies could be due to false mea-
surements caused by heterophilic antibodies [27] or differ-
ences in patient population. Serum sST2 levels were found
to be increased in RA compared to OA [23]. IL-33, IL-33R
ST2 and sST2 expression has been claimed as possible
markers of response to treatment in RA. First, RA patients
achieving a good response with an anti-TNF-α treatment
display lower levels of IL-33 in serum and SF and IL-33R
on immune cells compared to patients treated with metho-
trexate or non-responders to TNF-α inhibitors [28, 29].
This is further supported by the evidence that neutrophils
of anti-TNF-α responder patients respond to a lesser extent
to IL-33 in vitro compared to methotrexate-treated pa-
tients. Secondly, RA patients with lower sST2 levels at
baseline are those who more likely achieved remission
following 12 months of treatment with disease modifying
anti-rheumatic drugs (DMARDs) and anti-TNF-α agents
[30]. Finally, baseline detectable serum IL-33 levels have
been associate to a good clinical response to rituximab [31].
Interestingly, baseline IL-33 and sST2 levels have been also
associated to cardiovascular risk factors. Cardiovascular risk
is a severe comorbidity in RA patients being the first cause
of death in these patients and persistent inflammation is
one of the main determinants. In this regard, baseline level
of serum IL-33 is also a predictor for atherosclerotic plaque
progression in patients with early RA, independently of
other traditional risk factors and other inflammatory
biomarkers [30]. Currently available data regarding IL-
33 axis in RA do not allow to draw definitive conclu-
sion about its actual role in RA pathogenesis and con-
sequently about its possible therapeutic targeting in
this disease.

IL-36 and IL-38
The new IL-1 family members IL-36α, IL-36β, IL-36γ,
IL-36Ra (IL-1F5) and the antagonist IL-38, bind to the
IL-36R consisting of the IL-1 receptor-related protein 2
(IL-1RrP2) and its accessory protein IL-1RAcP. IL-36R
is expressed by DCs, CD4+ T-cells and macrophages.
Binding of the agonists to the membrane bound IL-
1RrP2 leads to the recruitment of the co-receptor IL-
1RAcP. This triggers an intracellular signaling cascade
via JNK, ERK1/2, and NF-kB which results in the
production of pro-inflammatory mediators. On the
contrary, the binding of the natural inhibitors IL-36Ra
and IL-38 prevents the signaling [32, 33]. During the last
few years, IL-36 cytokines as well as IL-37 and IL-38
raised growing interest, as they have been involved in
various diseases, including RA [34]. IL-37 and IL-38
have been shown to play an anti-inflammatory role in
several diseases, whereas IL-36 exerts pro-inflammatory
effects. All the three IL-36 agonists induce pro-
inflammatory mediators such as cytokines, chemokines
and co-stimulatory molecules thereby promoting Th1
and Th17 cell commitment, neutrophil influx and DC
activation [35]. In particular, IL-36 and its receptor can
stimulate DC and can promote their maturation; DC
precursors exposed to IL-36 release IL-12 and contribute
to differentiation of T cells to Th1 cells. In vivo, IL-36β
can act as an adjuvant to promote Th1 response [36]. In
humans, the three IL-36 isoforms and their receptor are
over-expressed in psoriasis; moreover, IL-36 can induce
the release of pro-inflammatory cytokines, such as IL-6
or IL-8 as well as IL-17, IL-22, and. These cytokines can
induce IL-36 release, creating a feedback loop [33, 37].
In mouse models of RA, such as CIA, collagen antibody-
induced arthritis (CAIA), and AIA, all of the IL-36 fam-
ily members are upregulated during acute inflammation.
However, treatment with an IL-36R-blocking antibody of
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TNF-transgenic mice, another experimental model of
RA, resulted in no changes in symptoms or clinical on-
set, suggesting that the severity of experimental arthritis
is independent of IL-36R signaling [38, 39]. This evi-
dence can be attributable to the redundancy of IL-1 fam-
ily member downstream signaling, mainly those of IL-1,
which is a major player in experimental arthritis. It is
unclear whether this redundancy is similar in human
arthritis. Of note, the magnitude of stimulatory effect of
IL-36 in synovial fibroblasts and articular chondrocytes
was markedly lower than those of IL-1 [40], suggesting
that IL-36 is probably not a key player in human arth-
ritis. IL-36β is constitutively expressed in human articu-
lar chondrocytes, and stimulation of both synovial
fibroblasts and articular chondrocytes by recombinant
IL-36β induces proinflammatory cytokine responses
[40]. In mice with CIA and in the synovium of patients
with RA, IL-36α, IL-36β, IL-36γ, IL-36Ra and IL-38 were
all elevated and correlated with IL-1β, CCL3, CCL4 and
macrophage (M)-CSF, but not with Th17 cytokines [41].
Expression of IL-36R and its ligands IL-36α and IL-36Ra
has been detected in the synovial lining layer and cellu-
lar infiltrates of patients with inflammatory arthritis [42].
IL-36α was upregulated in the synovium of patients with
PsA and RA, compared to patients with OA. Conversely,
IL-36R and its natural antagonist IL-36Ra were
expressed at similar levels in the synovial tissue in all
three diseases. In the same study, synovial CD138+

plasma cells seem to be the main source of IL-36α, and
IL-36α is able to induce IL-6 and IL-8 production in
synovial fibroblasts [42]. IL-38 (IL-1F10) is released as a
152-amino acid precursor having a molecular weight of
16 kDa. IL-38 shares 41% homology with IL1-Ra and
43% with IL-36Ra [43, 44]. IL-38 binds to IL-36 receptor,
as does IL-36Ra, and has similar biological effects on im-
mune cells. Thus, in vitro, IL-38 inhibits the production
of Th1 cytokines, IL-17, and IL-22. IL-38, similarly to
IL-36Ra, has an anti-inflammatory effect on PBMCs,
contrasting with a clearly pro-inflammatory effect on
DC with increased IL-6 production [45]. IL-38 is select-
ively secreted by human apoptotic cells to counteract in-
flammation. The depletion of IL-38 in apoptotic cells
leads to an increase of pro-inflammatory cytokine release
by macrophages and to the subsequent expansion of
Th17-cell at expense of IL-10-producing T cells [46].
Interestingly, in this study, full length recombinant IL-38
induced IL-6 production by macrophages, whereas trun-
cated IL-38 decreased IL-6 expression after X-linked
interleukin-1 receptor accessory protein-like 1 (IL-
1RAPL1) binding. However, it is still unclear whether IL-
38 is an inflammatory or an anti-inflammatory cytokine.
IL-38 seems to have either pro- or anti-inflammatory
effects depending on the dose. Whereas IL-38 gene
deficiency enhanced arthritis, systemic administration of
recombinant IL-38 protein did not inhibit arthritis devel-
opment. Therefore, it is possible that IL-38 may have dose-
dependent effects in inflammatory vs. anti-inflammatory
responses. Further analysis is required to test this hypoth-
esis. Takenaka et al. investigated AIA in IL-38 KO and
observed greater disease severity, accompanied by higher
IL-1β and IL-6 gene expression in the joints compared to
control mice [47]. Recently, Boutet et al. demonstrated that
adeno-associated virus-mediated IL-38 overexpression
exerted moderate but significant anti-inflammatory effects
in CIA and K/BxN serum transfer-induced arthritis (STIA)
[48]. In addition to the reduced macrophage number, a sig-
nificant decrease in the expression of Th17 cytokines (IL-
17, IL-22), IL-6, TNF-α and CXCL1 was observed in this
study, without any modification in IL-1β expression. Of
note, IL-38 overexpression did not induce the production
of other anti-inflammatory cytokines, but reduced signifi-
cantly IL-10 expression. IL-38 levels are increased in the
synovial membrane and sera from patients with RA
compared with healthy controls [47, 49] IL-38 is
expressed by keratinocytes, synovial fibroblast from pa-
tients with RA, as well as by human monocytes and
type I macrophages polarized in vitro [41].
Taken together, data about IL-36 in RA seem to

support the pursuit of its blockade for therapeutic
purposes in this disease, Conversely, whether the anti-
inflammatory cytokine IL-38 should be considered a
new therapeutic option in arthritis or other inflamma-
tory diseases deserves further experiments.

IL-37
IL-37, previously known as IL-1 family member 7 (IL-
1F7), is a member of the IL-1 family initially identified
in early 2000s [49]. IL-37b is the largest of the 5 differ-
ent splice variants (from a to e) and its precursor is
cleaved by caspase-1 into mature IL-37b. IL-37 is
expressed in several tissues, is associated with plasma
cells and it is constitutively expressed in the cytoplasm
of monocytes and PBMCs [50]. TLR agonists and pro-
inflammatory cytokines, including IL-1β, TNF-α and
IFN-γ can upregulate IL-37 in PBMCs [51]. Upon bind-
ing to its receptor shared with IL-18, IL-18R, IL-37 is
able to inhibit the transcription of several pro-
inflammatory cytokines, including IL-17, via the sup-
pression of the MAPK pathway [52, 53]. Recent data
demonstrated that IL-37 also needs IL-1R8, a member of
the IL-1R family, to exert such anti-inflammatory activ-
ity. In fact, transgenic mice overexpressing IL-37 are
protected from lipopolysaccharide (LPS)-induced shock
[53], but only if the IL-1R receptor is correctly expressed
in order to form the tripartite IL-37–IL-1R8–IL-18Rα
complex on the surface of PBMCs upon stimulation with
LPS [54]. Similarly, the administration of recombinant
IL-37 consistently reduced LPS-induced inflammation
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[54]. In addition, IL-37 transgenic mice develop less se-
vere colitis and psoriasis [55, 56]. Based on the anti-
inflammatory activity of IL-37, several studies have been
performed to investigate whether the administration of
IL-37 may ameliorate chronic inflammation [57]. Studies
performed in patients reported an overall increase of
circulating as well as tissue IL-37 in inflammatory bowel
disease [58], systemic lupus erythematosus [59], Graves’
disease [60] and AS [61]. With regard to experimental
arthritis, systemic and intra-articular administration of
recombinant IL-37 was able to inhibit the development of
synovitis by reducing pro-inflammatory cytokines and
modulating Th17 cells [62, 63]. In striking contrast with
experimental RA, but in line with the results obtained in
patients with other autoimmune disease, studies
performed in RA patients revealed higher serum and
plasma levels of IL-37 compared to normal and OA con-
trols [63–66]. Such increase is particularly evident in pa-
tients with active disease, compared to patients in
remission [65], and in patients with positive RF and anti-
CCP [66]. Furthermore, IL-37 levels have been correlated
to pro- and anti-inflammatory cytokines (IL-4, IL-7, IL-10,
IL-12, IL-13, IL-17A, TNF-α) as well as to disease activity
and bone erosions. Moreover, they are reduced by
DMARD and anti-TNF-α treatment in patients with a
good clinical response [64–66]. The only available study
assessing IL-37 levels in RA SF reported increased levels of
this cytokine compared to paired serum samples [66]. IL-
37 is also consistently expressed in the synovial tissue of
RA patients with active disease [63]. These findings may
be explained, at least in part, by the evidence that IL-37
plasma concentration in RA is directly correlated with
pro-inflammatory cytokines, including IL-17 and TNF, as
well as with disease activity and radiographic bone erosion
score and bone loss [64, 67]. It is therefore reasonable to
speculate that such increase of IL-37 may be a compensa-
tory mechanism to counteract the effector immune re-
sponse, likely occurring also in other autoimmune diseases.
This mechanism is not effective of course either because
IL-37 levels are insufficient or because the cytokine is neu-
tralized by factors that need to be elucidated.
Based on this, the potentiation of IL-37 as well the

identification of its agonists may represent an intriguing
approach for therapeutic purposes in RA.

New members of IL-12 family
IL-27
IL-27 is a newly identified heterodimeric cytokine
belonging to the IL-12 family, which includes IL-12, IL-
23, IL-27, and IL-35 [68]. The IL-12 cytokine family is
part of the IL-6 superfamily of type I cytokines. How-
ever, while IL-6 family members are secreted as single-
subunit monomers, those of the the IL-12 family are
heterodimeric. The four members of the IL-12 cytokine
family are consisted of an α chain (p19, p28, or p35) and
a β chain (p40 or Epstein-Barr virus induced gene 3
(EBI3)) [69]. In detail, p35 and p40 subunits constitute
IL-12, p19 and p40 subunits constitute IL-23 and p28
combines with EBI3 forming IL-27. The latest recog-
nized member, IL-35, consists of p35 and EBI3. For the
sake of completeness, it should be mentioned that very
recently another family member, IL-39, has been de-
scribed. IL-39 is composed of IL-23p19 and EBI3 hetero-
dimer, is secreted by activated B lymphocytes and seems
to play a pathogenic role in mouse models of systemic
lupus erythematosus [70, 71], but no data on RA or
other diseases are available so far. These cytokines trans-
duce the signal through unique pairings of 5 receptor
chains: IL-12Rβ1, IL-12Rβ2, IL-23R, IL-27Rα (or WSX-
1) and gp130. IL-12 signals through IL-12Rβ1 and IL-
12Rβ2, IL-23 signals through IL-23R and IL-12Rβ1, and
IL-27 signals through gp130 and IL-27Rα [72]. In T cells,
IL-35 signals through IL-12Rβ2 and gp130, although it
can also signal through IL-12Rβ2/IL-12Rβ2 and gp130/
gp130 homodimers [73]. Signal transduction through
these receptor chains is mediated by the Janus kinase
(JAK)-signal transducer and activator of transcription
(STAT) pathway. Despite similarities in the structural
cytokine subunits, receptor components, and down-
stream signaling, IL-12 family members display diverse
but balanced functions. IL-12 and IL-23 represent the
strictly pro-inflammatory members with key roles in T
helper (h) 1 and Th17 development [26, 74], while IL-27
carries out its role in inflammation supporting Th1 de-
velopment and interferon (IFN)-γ production and inhi-
biting Th2 and Th17 differentiation programs [75, 76].
IL-27 is mainly produced by antigen presenting cells
(APCs), including dendritic cells (DCs) and macro-
phages, as well as by endothelial cells. Besides the JAK/
STAT pathway, IL-27 can also activate other pathways
including p38- mitogen-activated protein kinase
(MAPK) and AKT in specific cell types, such as liver
and intestinal epithelial cells [77]. gp130 is ubiquitously
express in a wide range of cell types including mast cells
and natural killer (NK) cells while WSX-1 is consistently
expressed by naïve T cells and to a greater extent by acti-
vated and memory cells, the latter being therefore highly
susceptible to the effects of this cytokine [78]. Indeed,
IL-27 is a pivotal cytokine in the commitment of naïve T
cells. It was first described as a Th1-polarizing cytokine
being able to induce expression of T-bet and suppression
of GATA-3 [77]. However, the evidence that IL-27R
knockout (KO) mice develop a hyper-inflammatory pheno-
type, prompted to explore possible effects of this cytokine
on other T-cell subsets. The subsequent demonstration that
IL-27 can both increase the secretion of IL-10 by naïve T
cells, thereby inducing regulatory T (Treg) cells, and
directly antagonize the development of pro-
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inflammatory Th17-cell responses, allowed to specu-
late that IL-27 may have a protective role in chronic
immune mediated inflammatory diseases [79]. Inter-
estingly, studies evaluating the contribution of each
receptor subunit function revealed that the lack of
WSX alone does not affect the anti-inflammatory
properties of IL-27 [80, 81]. With regard to RA ani-
mal models, collagen induced arthritis (CIA) in IL-
27Rα KO mice is characterized by a more severe
clinical picture with synovial germinal center -like
structures, increased leukocyte infiltration, synovial
hypertrophy, and cartilage/bone erosion compared to
wild type (WT) mice [82]. Conversely, in
proteoglycan-induced arthritis (PGIA), IL-27 seems to
be crucial to trigger the inflammatory response [83].
Therefore, although the majority of studies agree that
both systemic and local administration of IL-27 ame-
liorates CIA and adjuvant induced arthritis (AIA)
[84–87], still the negative effect observed in PGIA re-
quires additional evaluation. With regard to the hu-
man counterpart, serum IL-27 levels are increased in
RA and seem to be directly correlated with disease
activity and RA-associated interstitial lung disease (ILD)
[88]. Wong et al. reported that IL-27 is higher in RA
plasma compared to normal subjects [89], while Tanida
et al. failed to observe any difference between RA, osteo-
arthritis (OA) and healthy controls [90]. Of interest, how-
ever, the latter study revealed that IL-27 is highly
expressed in RA synovial fluid (SF) and synovial tissue.
Synovial IL-27 mainly derives from CD14+ mononuclear
cells (MNC) rather than from fibroblast-like synoviocytes
(FLS). These IL-27 producing CD14+ MNCs are virtually
absent in OA synovium where IL-27 is barely detectable.
The production of pro-inflammatory cytokines and che-
mokines including IL-6 by RA-FLS in vitro is inhibited by
IL-27. Therefore, it may be hypothesized that IL-27 exerts,
or at least attempts to, an anti-inflammatory effect in RA
synovial environment via the inhibition of Th17-cell com-
mitment. In light of the well-established role of Th17 cells
in RA pathogenesis, and in particular in the development
of synovial germinal center-like structures, Jones et al. dem-
onstrated that synovial IL-27 expression is more pro-
nounced in germinal center-negative RA synovium
compared to germinal center-positive RA synovium and
OA synovium, and that it is inversely correlated to the ex-
pression of molecules involved in ectopic lymphoid
neogenesis. These findings, are in line with those obtained
in experimental RA and allow to speculate that IL-27 may
have a protective role in this disease [82].
Currently available data about IL-27 highlight that this

is another cytokine owing an anti-inflammatory activity
and therefore the identification of molecules acting as
IL-27 agonists may represent an intriguing option to be
explored in RA.
IL-35
IL-35 is a heterodimeric cytokine belonging to the IL-12
family together with IL-12, IL-23, IL-27 and IL-35 [91].
In T cells, IL-35 signals through IL-12Rβ2 and gp130, al-
though it can also signal through IL-12Rβ2/IL-12Rβ2
and gp130/gp130 homodimers [92]. Interestingly, al-
though all the receptors for IL-35 induce suppression of
T-cell proliferation, the homodimeric receptors are unable
to mediate the generation of IL-35 induced regulatory T
cells (iTr35) [92]. IL-35 signals both through gp130
and IL-12Rb2 homodimers and through an IL-
12Rb2:gp130 heterodimeric receptor but only the latter
can mediate T-cell suppression and iTr35 induction
through the formation of pSTAT1:pSTAT4 heterodimers
[92]. Furthermore, IL-35 signaling through an IL-
12Rβ2:WSX-1 heterodimer and the induction of pSTAT1
and pSTAT3 is peculiar of B cells [93]. IL-35 is mainly
released by Treg cells, is required to potentiate the suppres-
sive activity of murine and human Treg cells and therefore
inhibits T-cell proliferation in vitro and in vivo disease
models [94]. Recently, it has been reported that also regula-
tory B (Breg) cells can produce IL-35 [93, 95]. Finally, as
shown for IL-10 and transforming growth factor (TGF)-
β, IL-35 can also induce the conversion of naïve T cells
into iTr35 cells [96]. The CIA mouse model shares
many similarities with human RA as synovial cells prolifer-
ate in a tumor-like manner and cause synovitis. Angiogen-
esis is a shared pathogenic process, hence vascular
endothelial growth factor (VEGF) is a crucial player in
tissue injury/repair, inflammation and eventually in RA
development [97]. IL-35 plays an anti-inflammatory role by
inducing Treg-cells and inhibiting Th17 cell commitment
in several experimental models of inflammatory diseases in-
cluding CIA [98]. Moreover, IL-35 treatment inhibited pro-
liferation and promoted apoptosis in cultured FLS from
CIA mice in a dose-dependent manner [99]. Finally, IL-35
seems to inhibit angiogenesis of CIA mice as well as
downregulate the expression of VEGF and its receptors,
ameliorating the severity of synovitis [100]. Unfortunately,
data on IL-35 in patients affected by RA remain controver-
sial. In particular, while some Authors support anti-
inflammatory activities of IL-35, others suggest its pro-
inflammatory properties. IL-35 was found to be higher in
patients with treatment naïve early RA compared to those
with established disease and to be reduced after 3 months
treatment with glucocorticoids and conventional synthetic
(cs) DMARDs [101]. IL-35 was found to be also higher in
SF RA compared to PsA and control OA patients and cor-
related with higher disease activity, supporting a potential
role of IL-35 in the pathogenesis of RA [101, 102].
Moreover, TNF-α can induce the expression of both p35
and EBI3 subunits in FLS and MCs, and since the latter
express both subunits of IL-35 receptor can secrete several
pro-inflammatory molecules (IL-1β, IL-6 and MCP-1) upon
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IL-35 stimulation [102]. Nakano et al. reported that serum
levels of IL-35 are decreased in RA patients, when com-
pared with normal controls, mainly in patients with active
disease, with an inverse correlation between serum IL-35
levels and the 28-joint disease activity score (DAS) based
on CRP [103]. The function of IL-35 was also evaluated in
a suppression assay using T cells isolated from human RA
patients; recombinant IL-35 facilitated the function of nat-
ural Treg cells in vitro and restrained pro-inflammatory cy-
tokines such as IL-17 and IFN-γ [103]. These conflicting
results may be explained at least in part by the heterogen-
eity of patient cohorts, also from a genetic point of view,
and different disease activity scoring systems. Further
studies, especially in larger cohorts of patients are required
to clearly explore the immunosuppressive role and potential
therapeutic benefits of targeting IL-35 in RA.

IL-32
IL-32 is a cytokine produced by immune and non-
immune cells, and has recently gained popularity
because of its important biological functions [104]. IL-32
gene was found to be located on human chromosome
16p13.3 and was reported to exist in nine different iso-
forms by mRNA alternative splicing including IL-32 ,
IL-32 , IL-32 , IL-32 , IL-32 , IL-32 , IL-32 , IL-
32 , and IL-32 s (small), with specific activities and prop-
erties. Moreover, these isoforms can interact with each
other intracellularly to control their respective activities
and IL-32 is the most active isoform [105–107]. IL-32 is
not assigned to any of the cytokine families, due to the
lack of homology with other well-known cytokines. IL-32
was originally described as an mRNA called NK cell tran-
script 4 (NK4), which encoded a protein with many char-
acteristics of a cytokine, derived from IL-2 activated
natural killer cells [108]. NK cells, monocytes/macro-
phages, T lymphocytes, as well as epithelial cells, endothe-
lial cells, fibroblasts, and hepatocytes, express IL-32 [109],
mainly intracellularly, although some reports suggest that
the IL-32γ isoform, could be secreted in limited amounts
[110]. However, depending on the cell type and stimulus,
IL-32 may be released after necrotic cell death or in vesicles
such as exosomes [111, 112]. One problem that remains as-
sociated with IL-32 is the identification of cell surface recep-
tor of IL-32. IL-32 is a pleiotropic cytokine and an
important player in innate and adaptive immune responses,
involved in a number of biological functions, including cell
differentiation, stimulation of pro- or anti-inflammatory cy-
tokines and cell death, especially apoptosis [113]. In detail,
this cytokine induces other pro-inflammatory cytokines and
chemokines such as TNF-α, IL-1β, IL-6, and IL-8 by means
of the activation of NF-kB and p38-MAPK. IL-32, via
caspase-3 activity, induces differentiation of monocytes into
macrophage-like cells with characteristics of generating pro-
inflammatory cytokines such as IL-6, TNFα and chemokines
[114]. IL-32γ, via a phospholipase C (PLC)/ c-Jun N-
terminal kinases (JNK)/NF-kB-dependent pathway, induces
maturation and activation of DCs, leading to increased pro-
duction of IL-12 and IL-6, Th1- and Th17-polarizing cyto-
kines [115]. Moreover, IL-32 synergizes with nucleotide
oligomerization domain (NOD) 1 and NOD2 ligands for IL-
1β and IL-6 production, through a caspase 1-dependent
mechanism [116]. Finally, IL-32β, increasing adhesion of in-
flammatory cells to activated endothelial cells with conse-
quent induction of pro-inflammatory cytokines, is involved
in the propagation of vascular inflammation [117]. Its pro-
duction is predominantly induced by IL-1β, TNF-α, IL-2 or
IFN-γ in blood monocytes and epithelial cells [39]. In
addition to cytokines, microbial products, including viruses,
have emerged as potent inducers of IL-32 in human mono-
cytes, macrophages, and monocyte-derived DCs [109]. All
the above mentioned data clearly point out that IL-32 and
TNF-α are strongly linked to each other and being TNF-α a
key cytokine in RA pathogenesis, IL-32 may play profound
effects in this process [118]. Studies from animal models
demonstrated that human IL-32, when injected in joints of
naïve mice, leads to increased expression of inflammatory
molecules (IL-1β, TNF-α, IL-18, IFN-γ, IL-17, IL-21 and IL-
23), recruitment of inflammatory cells, cartilage derange-
ments and joint swelling [119]. Conversely, joint swelling
and presence of inflammatory cells drastically decreased in a
TNF-α deficient mouse model [120]. This observation fur-
ther supports the key interplay between TNF-α and IL-32 in
RA pathogenesis. Furthermore, the unmasking of the mo-
lecular mechanism of the IL-32/ TNF-α in RA open new av-
enues for their potential therapeutic targeting. Several
studies confirmed an overexpression of IL-32 and IL32γ in
RA patients, when compared to osteoarthritis or healthy
volunteers [121, 122]. In particular, the IL-32γ level was
found significantly upregulated in CD14+ monocytes and
synovial membrane of RA patients [123, 124]. High levels of
IL-32 in synovial biopsies of RA, as compared to its absence
in OA patients, suggested that IL-32 is potent mediator of
active osteoclastogenic activity. In particular, the synergism
between IL-32 and soluble receptor activator of nuclear fac-
tor κ-B ligand (sRANK-L) enhances the activity of
osteoclasts and consequently tissue resorption [124]. Both
IL-32 and IL-17 can reciprocally influence each other’s pro-
duction and amplify the function of osteoclastogenesis in
RA synovium [124]. RA FLS seem to have a key role in
osteoclastic activity, as well as in pannus formation in the
joint [125]. IL-32β, δ, and γ mRNA overexpression in RA
FLS is primarily induced by TNF-α, IFN-γ and toll-like
receptor (TLR)-2, −3, and −4 ligands, and the overexpres-
sion of IL-32 seems to stabilize the mRNA transcripts of
other cytokines, in particular TNF-α, IL-1β and IL-8 [110,
126]. In FLS, TNF-α-activates Syk/PKC-d/JNK/c-Jun path-
way to induce IL-32 (isoforms α, β, δ, and γ) [127], suggest-
ing a splicing of IL-32γ into IL-32β [110]; interestingly, IL-
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32β is associated with lower inflammation and less severity
of RA when compared with IL-32γ. IL-32 stimulates the
synthesis of prostaglandin E2, an important mediator of car-
tilage and bone destruction in RA [128]. Very few clinical
data regarding IL-32 response in patients treated with anti-
TNF-α therapy are available; in particular, synovial knee bi-
opsies showed a significant decrease in IL-32 expression in
RA patients treated with a TNF-α blocker [129]. This obser-
vation fits with the evidence of a direct correlation between
IL-32, TNF-α and disease activity in RA [130]. Additional
studies, especially in human systems, are necessary to
resolve the inconsistency of IL-32 in RA as well as to
explore the therapeutic potential of this cytokine in RA.

IL-34
IL-34 has been discovered in 2008 [131] and the receptor
to which IL-34 binds with the highest affinity, colony
stimulating factor (CSF)-1R, is shared with CSF-1. How-
ever, IL-34 and CSF-1 do not share sequence homology
and have different expression patterns being IL-34 re-
stricted to few tissues (brain, epidermis, spleen, bone mar-
row, lymph nodes) and CSF-1 widespread [132]. Upon
binding to CSF-1R, IL-34 stimulates monocytes and mac-
rophages through extracellular signal-regulated kinase
(ERK) 1/2 or AKT phosphorylation. Recent data, however,
demonstrated that IL-34 could also bind chondroitin
sulphate chains, such as PTP-ζ and syndecan-1, but with
lower affinity [133, 134]. This is of particular importance
in tumor biology as these receptors are up-regulated in
several cancer types. IL-34 can be induced by a variety of
pro-inflammatory cytokines, including IL-1β and TNF-α,
and its main function of that to promote monocyte
survival, proliferation and differentiation to macrophages.
Recent studies revealed that IL-34 drives the differenti-
ation of monocytes into immunosuppressive M2 and that
human macrophages cultured in the presence of IL-34 are
able to expand Treg cells. Interestingly, IL-34-expanded
Treg cells display a stronger suppressive activity compared
to non–IL-34–expanded Treg cells [135, 136]. This
widens the spectrum of action of IL-34 towards immune
tolerance. Moreover, IL-34 is involved in RANK-L mediated
osteoclastogenesis by inducing the proliferation and adhe-
sion of osteoclast progenitors in vitro and by inducing the
formation of osteoclasts from murine splenocytes in vivo,
thereby reducing trabecular bone mass [137–139]. IL-34
deficient mice selectively lack Langerhans cells and
microglia and display weak immune responses to skin
antigens and central nervous system-selective viruses,
but they display neither osteopetrosis nor any auto-
immune manifestation [140, 141]. Mice lacking CSF-1R
receptor are toothless and severely osteopetrotic and dis-
play circulating monocyte depletion, total depletion of
microglia, significant impairment of olfactory function, de-
fects in reproductive function and reduced bone marrow
hematopoietic progenitor cells [142–144]. Conversely, the
neutralization of CSF-1R in adult mice leads to a
reduction of mature monocytes in blood and bone
marrow, without affecting precursors [145]. With regard
to experimental arthritis, it is interesting to note that the
lack/blockade of CSF-1 as well as the blockade of CSF-1R
is associated with less severe methylated bovine serum al-
bumin (mBSA)-induced arthritis and CIA [146–148]. In
RA patients, all available studies pointed to increased
serum and SF levels of IL-34 with respect to normal and
disease controls (OA, PsA, ankylosing spondylitis (AS))
[149–153]. Of interest, ser0075m IL-34 levels correlated
with immunological markers of more severe disease in-
cluding rheumatoid factor (RF), anticyclic citrullinated
peptide antibody (anti-CCP) titers, erythrocyte sedimenta-
tion rate (ESR), C-reactive protein (CRP), and with disease
activity and smoking [149–152]. In this regard, serum IL-
34 levels have been also associated with radiographic pro-
gression and appear to be good predictors of radiographic
damage in RA patients [150, 152]. Interestingly, treatment
with DMARDs or TNF-α inhibitors is able to reduce
serum IL-34 levels [151, 154]. IL-34 levels are also higher
in RA SF compared to OA SF and increased in RA pa-
tients with higher disease activity [149, 153]. Of interest,
SF IL-34 levels are directly correlated with those of SF
RANK-L, further supporting the link between IL-34 and
RANK-L mediated osteoclastogenesis [149]. Finally, IL-34
is also consistently expressed in RA ST, mainly in the sub-
lining and the intimal lining layer, with its expression be-
ing associated to synovitis severity [148, 154, 155]. All
these observations about IL-34 raise the question whether
the blockade of its pro-inflammatory and bone remodeling
effects are worth the loss also of the strongly suppressive
IL-34 driven Treg cells. Therefore additional data are
needed to clarify its therapeutic potential in RA.

Conclusion
The progression and severity of inflammation in RA is as-
sociated with a consistent production of pro-inflammatory
cytokines and a deregulation of anti-inflammatory cyto-
kines. Although several biologic agents with different mech-
anisms of action are available for the treatment of RA, even
now a consistent number of patients either do not respond
or respond only partially to these compounds. Therefore,
the advance of our understanding of mediators involved in
the pathogenesis of RA and in consequence, the develop-
ment of novel targeted therapies, are compelling. Forty
years after the discovery of IL-1, the never-ending quest to
identify ‘the’ culprit of RA development is still a fascinating
field under intense investigation. In recent years, the
landscape of pro- and anti-inflammatory cytokines has
rapidly expanded with the identification of new members
proven to be involved at different extent in the pathogenesis
of RA. In some cases, evidence from animal models and RA
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patients is already consistent to move forward into drug
development. In others, conflicting observation and the
paucity of data require further investigations.
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